TOPOLOGICAL INSULATORS
Novel topological phases at interfaces and in superlattices
TRANSITION METAL DICHALCOGENIDES
Mapping electronic structure of atomically thin 2D materials
MAGNETIC THIN FILMS
Ferromagnetism and spin-orbit coupling in 3d and 4f systems
Research Program
High resolution angle-resolved photoemission spectroscopy with the added spin-sensitivity (spin-ARPES) is the technique of choice to probe the electronic structure of crystalline solids. Driven by the interest in understanding the magnetic properties of surface electrons, we map band dispersions and Fermi surfaces of epitaxial thin films and novel materials such as topological insulators.
We operate two spin-ARPES setups. One of them operates at the soft x-ray undulator synchrotron radiation beamline in DELTA/Dortmund where also time-resolved experiments in the femtosecond regime will be possible in the near future. The other, lab-based system, combines high intensity He, Xe, or Kr discharge sources with cryogenic cooling to provide overall energy resolution below 6 meV.
We also use hard x-ray ARPES (HARPES) in order to obtain insight into the electronic structure of bulk and buried interfaces.
Our photoemission experiments are performed in the lab in Jülich and at various synchrotron beamlines around the globe, such as Spring8 (Japan), BESSY (Berlin), or DESY (Hamburg), Diamond (UK), Elettra (Italy).
We are also performing magnetotransport measurements on epitaxial ferromagnet/heavy metal interfaces with the goal to understand the impact of the interfacial electronic structure on spin-orbit torque physics.
Group members


Ewa Mlynczak

Tristan Heider

Bharti Parashar

Kevin Janßen

Mohammed Qahosh

Honey Boban

Pika Gospodaric

Mathias Gehlmann

Markus Eschbach

Sven Döring
